Dynamic Modelling and Motion Control for Underwater Vehicles with Fins

نویسندگان

  • Xiao Liang
  • Yongjie Pang
  • Lei Wan
  • Bo Wang
چکیده

With the development of the activities in deep sea, the application of the autonomous underwater vehicle (AUV) is very widespread and there is a prominent prospect. The development of an AUV includes many areas, such as vehicle (carrier/platform) design, architecture, motion control, intelligent planning and decision making, etc (Blidberg 1991; Xu et al., 2006). The researchers dedicate themselves to improving the performance of modular, low-cost AUVs in such applications as long-range oceanographic survey, autonomous docking, and shallow-water mine countermeasures. These goals can be achieved through the improvement of maneuvering precision and motion control capability with energy constraints. For low energy consumption, low resistance, and excellent maneuverability, fins are usually utilized to modify the AUV hydrodynamic force. An AUV with fins can do gyratory motion by vertical fins and do diving and rising motion by horizontal fins. Therefore, the control system of the propeller-fin-drived AUV is very different to the conventional only-propeller-drived AUV. A dynamic mathematic model for the AUV with fins based on a combination of theory and empirical data would provide an efficient platform for control system development, and an alternative to the typical trial-and-error method of control system tuning. Although some modeling and simulation methods have been proposed and applied (Conte et al., 1996; Timothy, 2001; Chang et al., 2002; Ridley, 2003; Li et al., 2005; Nahon, 2006; Silva et al., 2007), there is no standard procedure for modeling AUVs with fins in industry. Therefore, the simulation of the AUVs with fins is a challenge. This chapter describes the development and verification of a six Degree of Freedom (DOF), non-linear model for an AUV with fins. In the model, the external force and moment resulting from hydrostatics, hydrodynamic lift and drag, added mass, and the thrusters and fins are all analyzed and expressed in matrix form. The equations describing the rigid-body dynamics are left in non-linear form to better simulate the AUV inherently non-linear behavior. Motion simulation is achieved through numeric integration of the motion equations. The simulation output is then checked with the AUV dynamics data collected in experiments at sea. The comparison results show that the non-linear model gives an accurate estimation of the AUV’s acutal motion. The research objective of this project is the development of WEILONG mini-AUV, which is a small, low-cost platform serving in a range of oceanographic applications (Su et al., 2007). O pe n A cc es s D at ab as e w w w .in te ch w eb .o rg

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maneuverability of a Flat-streamlined Underwater Vehicle

Maneuverability describes a vehicle’s ability to change course or turn. Maneuverability of conventional underwater vehicles, such as torpedoes, can be determined by altering the position and length of control fins. To perform large-area surveying tasks, autonomous underwater vehicles (AUVs) generally require different maneuverability characteristics in their vertical and horizontal planes of mo...

متن کامل

Investigation of the Effect of Cavitator Angle and Dimensions for a Supercavitating Vehicle

At very high speeds, bubbles form in the underwater vehicles because of sharp trailing edges or of places where the local pressure is lower than the vapor pressure. These bubbles are called cavities and the size of the cavities grows as the velocity increases. A properly designed cavitator can induce the formation of a single big cavity all over the vehicle. Such a vehicle travelling in the vap...

متن کامل

Adaptive Robust Control for Trajectory Tracking of Autonomous underwater Vehicles on Horizontal Plane

This manuscript addresses trajectory tracking problem of autonomous underwater vehicles (AUVs) on the horizontal plane. Adaptive sliding mode control is employed in order to achieve a robust behavior against some uncertainty and ocean current disturbances, assuming that disturbance and its derivative are bounded by unknown boundary levels. The proposed approach is based on a dual layer adaptive...

متن کامل

توسعه یک مدل سه بعدی روبات ماهی و مقایسه آزمایشگاهی نتایج

Biomimetic underwater vehicle design has attracted the attention of researchers for various reasons such as ocean investigation, marine environmental protection, exploring fish behaviors and detecting the leakage of oil pipe lines. Fish and other aquatic animals have good maneuverability and trajectory following capability. They also efficiently stabilize themselves in currents and surges leave...

متن کامل

Identification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model

In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012